Insides Out

When we see parts of buildings coming apart, we get curious, and that can prompt us to learn how things get put together. Sometimes, it’s obvious how building elements began to deteriorate or started to come undone. Other times, it’s a real head-scratcher.

Damaged brick wall.

This masonry wall is separated from the street by about 5 feet of sidewalk, and another 4 feet of planting strip with some trees. The closest lane on the street is dedicated to parallel parking. This damage is about 6 feet above the sidewalk. I just can’t imagine how this happened. But what it exposes is the stuff we don’t usually see (a cylinder of mortar!) so here is an opportunity for exploration.

Many people never see the entirety of a single brick. We walk by brick walls, but are never prompted to ask what a lone brick looks like without its fellow bricks.

Old brick wall of house.

Or we walk over beautiful brick pavers, which some people have no way of knowing aren’t the same type of brick that is typically used for building walls.

Brick pavers in concrete sidewalk.

Or we spent the first decade of our life playing with the pallet of brick pavers our parents eventually, finally, paved the family home’s outdoor courtyard with. So some people probably imagine that all bricks are solid all the way through. However, today’s facing brick, the brick that is visible on a building, isn’t typically solid all the way through. A “solid” brick by today’s standards can have up to 25 percent of its cross-sectional area cored out or depressed.

Above and below: A facing brick with cores.

There are a few good reasons for voids such as cores, frogs (depressions), or cells. Compared to bricks that are completely solid, bricks with voids use less clay, can be fired in the kiln more evenly and quickly (using less energy), and are lighter-weight (easier to transport and to install). Voids also allow for mortar on more surface area of the brick, which helps all the bricks in the wall mechanically bond together better. In the case of cores and cells, mortar can continue through each brick from the mortar bed below to the mortar bed above, further strengthening the bonds between the individual components of the wall. (That’s what that cylinder of mortar is in the top photo – mortar continuing through cores in bricks from bed to core to bed to core. It is the stuff we are not meant to see – part of the magic of masonry walls.)

I guess one downside of a well-bonded wall such as the one in the top photo is that it’s harder to get a damaged brick (or 4 damaged bricks) out of the wall for replacement. I wonder exactly when this damage happened – before or after final completion – and why it wasn’t repaired. 

When specifiers specify bricks, we indicate that bricks to be used in exposed conditions, such as at ends of window sills and ends of wall caps, are to be bricks without voids such as cores, frogs, and cells. Otherwise, voids in bricks are allowed, but the voids will not be visible in completed construction.

Sometimes damage happens, but at other times… well, someone didn’t think this through before ordering materials (photo of site wall cap, below). It’s not only when things fall apart that their insides are exposed. Some things just aren’t planned, detailed, or specified carefully. This isn’t magic revealed, it’s just a mistake that got built. Let’s try to do better.

Old brick site wall.

I’m just a brick lover, not a brick expert. The Brick Industry Association (BIA) has lots of useful information. Here’s the technical article that addresses some of these issues mentioned above.

What’s Under That Stuff?

I recently stayed at a historic hotel a few states away. It’s a very historic hotel – over 130 years old, and a designated historic landmark. The framing of the grand old building is all wood. I don’t know exactly what is under the finished floors in the guest rooms, but I do know that wood framing and wood subfloor are among the components in there.

Our bathroom had large-format natural stone tile – about 12 inches by 24 inches – probably not “period” – and also not very old. Based on a few facts that I know from staying there several times over the last half century, and a long-held interest in the building, my best guess is that the large-format stone tile on our bathroom floor had been installed just over 15 years ago.

The stuff is thick – 3/8-inch to 1/2-inch thick, if the base and wall tile are the same as the floor tile – and it appears to be natural marble.

And it’s cracked, in multiple places. And multiple bathrooms on the same floor also have cracked floor tile.

Cracked large-format marble floor tile, hotel bathroom. Photo by Liz O’Sullivan

The stuff under this tile is probably the reason for the cracking. I’m not exactly sure what’s under there besides the wood framing and the wood subfloor, but one thing I do know for sure is that there is barely a single level or flat hallway floor or guest room floor in the hotel. More importantly, some of the floors feel a bit… flexible.

Levelness isn’t a big issue – tile can be installed on ramps, after all. (Our bathroom floor was a bit like a ramp, by the way, noticeably sloping from the door to the back wall. Ah, the charm of an old hotel.)

But my perception of flatness… that is an issue for the substrate under large-format tile. And the flexing in the floor that I felt when I walked down the hall or across my guest room? That is definitely not good under tile. This flexing is probably at the root of the cracking issue. Deflection is an important thing to address for floors which are to receive tile.

Now, I bet that some measures had been taken with the preparation of the substrates for tile so that they weren’t as flexible or unlevel as they are elsewhere in the building. The tile floors certainly didn’t feel flexible or unflat. But… those tiles cracked, after installation. So my guess is that the measures weren’t quite enough.

Obviously humans have been walking on marble for ages – even on thin marble such as tile. The astonishing roof terraces of the Duomo in Milan, Italy, are paved in marble, and any ambulatory person who can get up there (via elevator or stairs) can walk around the roof terraces, on the marble pavers, and even on the sloped marble roof tiles.

I don’t know what’s under the Duomo rooftop pavers and tiles. (Wouldn’t that be a fabulous tour – the attic of the Duomo?) But I do know that a different substrate installation than what is existing might have helped prevent the cracking of the hotel bathroom floor tile. And my opinion is that if the existing conditions were such that not enough could have been done to create an appropriate substrate for large-format natural stone tile, perhaps a different finish should have been selected for those hotel bathroom floors.

The construction industry has installation guidelines for so many parts of buildings. Manufacturers of specific products and assemblies have their own published installation instructions, and proper installation is often tied to warranty validity. For example, in many cases, an EPDM roofing installation must be done under certain weather conditions, must use specific products approved but not necessarily made by the EPDM manufacturer, and must be inspected by the EPDM manufacturer’s technical representative in order to get the specified warranty.

Building codes incorporate some standards into their requirements – in order to meet code, certain building products and assemblies must be installed according to certain published standards. For example, some building codes require that suspended acoustical panel (“acoustical tile”) ceilings are installed in accordance with the provisions of ASTM C636, Standard Practice for Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-In Panels.

Other building materials, such as lumber, plywood, brick, glass, and natural stone tile, don’t necessarily come with manufacturers’ installation instructions, and since there are many different ways that these materials are used in construction, building codes don’t necessarily govern their installation, either. But industry organizations have developed guidelines for the installation of these materials and so many more. There are at least two separate industry organizations who have developed some guidelines for the installation of natural stone floor tile. The Natural Stone Institute (formerly the Marble Institute of America) has some important guidelines in its Dimension Stone Design Manual.1 A publication by the Tile Council of North America, the TCNA Handbook for Ceramic, Glass, and Stone Tile Installation2 is referenced by the Dimension Stone Design Manual, and is also a very important stand-alone document. The TCNA Handbook has tile installations called out by alphanumeric designations that many people are familiar with – many tile setting and grout manufacturers refer to specific TCNA installations in their product info, and many specifiers use the TCNA designations in Tile Installation Schedules in the Tiling spec sections. Some architects and interior designers carefully refer to the TCNA Handbook when they’re figuring out the designs of tile installations.

But sometimes design professionals just don’t realize that there are industry-standard ways to install things. And then there’s the special condition of an existing, historic building – historic buildings certainly can be tricky. And sometimes the approach that makes the most sense is to work with what you have, and not do any invasive explorations to verify suitability of substrates for new installations. One problem with a project that involves nothing but updating interior finishes is that sometimes the design team is made up completely of people who are considering nothing but the surfaces, and the person selecting the floor tile may not realize that one floor tile is not necessarily interchangeable with another floor tile. Natural stone isn’t as strong as most ceramic tile. So a proper installation of natural stone floor tile requires a stiffer substrate (a substrate with less deflection) than an installation of ceramic floor tile requires.

Both the TCNA and the Natural Stone Institute address stiffness of subfloor for natural stone tile in their publications. For stone tile on wood subfloor without room for a thick mortar bed, TCNA calls for the joists to be no more than 16 inches on center, supporting the plywood subfloor, over which should be installed a plywood underlayment, then a backer board such as a cementitious backer board, then the stone tile. The Natural Stone Institute and the TCNA both call for stone tile subfloor areas in frame construction to have a deflection not exceeding L/720 of the span. There may be some wiggle room with some of the TCNA guidelines (joist spacing, backer board) when using certain uncoupling mats which have specific manufacturers’ installation instructions for the mat and the tile, but the 2 layers of plywood (subfloor plus underlayment) seem to be the best practice in all natural stone floor tile installations.

I’m not an authority on tile, or on the Milan Duomo – the point I’m trying to make with this blog post is that there are ways to design, detail, and specify, in our construction documents, the proper installation of most building materials, and this is not where a design professional’s creativity should take the lead. This is where the design professional’s technical side needs to be guiding the documentation. There are manufacturer requirements in some cases, building code requirements in some cases, and industry best practices in so many cases, including the case of natural stone tile. The designer should become familiar with these. Not all of this technical stuff can be taken care of with the project specifications – some of it needs to be shown in the drawings. Not all finishes can be applied or installed the same way as other finishes, even in a remodel, even when replacing (what-was-probably-small-ceramic) tile with (large-format-natural-stone) tile. When materials are designed and detailed properly in the drawings and specs to explicitly describe a correct installation, they’ll look as good decades later as they did immediately upon completion. (Maybe they’ll even still look good centuries later.)

Duomo Roof Terraces, Milan, Italy, September 2019. Photo by Liz O’Sullivan

Marble roof paver on the left, marble roof tile on the right, Duomo Roof Terraces, Milan, Italy, September 2019. Photo by Liz O’Sullivan

Notes:

  1. The Natural Stone Institute’s Dimension Stone Design Manual is on their website for free. You access one chapter at a time.
  2. The TCNA Handbook for Ceramic, Glass, and Stone Tile Installation is updated every few years. It’s available for $50 on the TCNA website.

Planning for Obstacles

Some people are used to showing up in the wrong place, at the wrong time, with the wrong stuff.

Others of us double-check our calendars, recheck that voicemail, look up an address once again, and plan for extra time for bad traffic conditions, because we never want to show up at the wrong place, at the wrong time, or unprepared. Some of the double-checkers and planners hate to be late, can’t stand being wrong, don’t want to let anyone down, or fear looking unreliable. Others have busy lives like houses-of-cards, with multiple kids to get to multiple places, many work obligations, and unpredictable metro area traffic conditions. If one card slips, the whole house falls down.

Over the last 13 months, the double-checkers, along with just about every other human being on our planet, have been shown that no matter how carefully we plan, sometimes unpredictability is unavoidable. Since Covid-19 appeared, we have all learned what it’s like to be surprised by plans going awry.

Covid-19 has spawned many new obstacles, even for those of us who haven’t been affected health-wise. Traffic may not be much of a concern, but maybe we have to plan for extra time to wait in a line outside a grocery store until numbers of shoppers are low enough to be admitted. We’ve gotten used to waiting in a parking lot until enough patients have been brought in to exam rooms or dentist chairs before we can enter a building. We’ve had to reschedule doctor appointments because of stay-at-home orders, Covid-like symptoms, or because an office located in a hospital seemed unnecessarily risky to go to at certain times.

And the planners among us have learned that not all obstacles can be avoided. There’s not always a way around or forward or through. Most startling of all the revelations brought to light by Covid-19 is that there’s not always an immediately obvious treatment or cure for an illness, anywhere in the world, for any amount of money, even though every one of us is at risk.

But many obstacles in modern life can be anticipated.

In my work as an architectural specifications consultant, I don’t know when I started doing useful, organized planning things such as putting into my work calendar the day and time by which to expect deliverables from my architect-clients’ other consultants. I work on multiple projects at one time, and can’t keep all this in my head. I know for certain that this practice has headed off some potentially missed deadlines and has uncovered some schedule changes that I had not been informed about – preventing problems for my architect-clients, their other consultants, and myself, because I knew to follow up with people when when I had heard nothing by the time I was supposed to receive something.

I wasn’t born organized or proactive.

As a parent of two teenage boys, I’ve watched them learn, grow, and develop all their lives. This observation has cast a lot of light onto the development of my own planning and organizational abilities. I figured out some of my practices on my own, and some were suggested to me. Not much was taught – or it’s possible that I just refused to absorb the tips that may literally have been taught in high school when I was 13. Most people need a bit of experience and context in order to absorb the skills they are taught. For many people, those planning and organizing tips won’t really stick in the mind long enough to be put into practice if there’s no actual experience to associate them with – often some shortfall experience is required. I will never forget hearing my 16-year-old neighbor give a good idea to my son, who was 14 at the time and had forgotten his shin guards, about putting everything he needed to go in his soccer bag on top of the bag the night before, but waiting to actually pack until morning, so he knew exactly what was in there in the morning, and didn’t have to unpack to double-check. This approach works for me, too, but it took me decades to figure out on my own! But this boy’s mom is organized enough to teach her son how to organize himself – and to give the tip to others!

As a careful planner myself (now), I take every opportunity to point out organizational tips to my kids in the appropriate context. Being teenage boys, they don’t always take my suggestions to heart. This was most obvious during my proofreading of my older son’s multiple college applications. I lost track of how many times I told him to redo and reupload his resume because he kept missing one of several capitalization or punctuation errors I’d pointed out, and I kept finding them in the “final” versions of his applications. I’ve always been a proofreader, which not everyone can be, and I’m happy to fill that role for people in my family – but the people I do this for need to plan ahead and take into account the time this will take and the time to go back and fix things if errors are found – especially before those college application deadlines!

It may have taken me a while, but I know now that I need to ask for other consultants’ specs in time enough not just for me to compile everything into the project manual, but also in time enough for me to report back to them so they can redo and resend things if I notice problems that they didn’t catch before sending – like when “track changes” “all markup” was turned on when PDFs were made and they inadvertently sent me documents not suitable for issuing, or when filenames are somehow not matching the files and we end up short one spec section yet have a duplicate of another.

Age and experience have taught me that systems don’t always work properly, even in first-world countries, even at well-established institutions. But if we add routine double-checking and some schedule cushion to our practices, we can avoid some problems.

Well before those college application deadlines, but after my son had sent in college entrance exam results, transcripts, letters of recommendation, and applications, I encouraged (ok, nagged) him to check all his college application portals to make sure that everything that he’d sent was actually received. Almost everything was… but almost isn’t enough. My son was able to head off a problem by figuring out well ahead of time that his ACT scores never made it to one of the universities he sent them to, and he was able to resend the scores before the application deadline. He would have never known in advance that his good test scores never got there and that his application was incomplete if he hadn’t double-checked that application portal. I think he will remember this experience, and I hope that he develops into a planner and a double-checker.

Through experience, I have learned to always send a followup email, with no attachments, after I’ve sent an email with a large attachment. Project manuals can be massive PDF files, and sometimes emails with such attachments don’t make it to my architect-clients when I send them. I have learned that the absence of a notification that my email didn’t make it is not an assurance that my email made it. So I always send a followup email.

Some system breakdowns simply cannot be planned for or worked around. This has been made very clear to me in the Covid era. A call from school about a sick kid always makes parents jump up and drop what they are doing at work, but getting a call from school about a kid with Covid-19 symptoms who needs to be picked up and tested due to a past exposure at school even after a quarantine is a whole new level of unplanned obstacle. This is the stuff we just have to take a deep breath about. It’s not nearly as tragic or unexpected as an emergency such as a Covid infection, a car accident, or a death in the family, but for many people, unexpected things like this have happened so many times in the 13 months, and they simply can’t be planned for. This has been a year of taking many deep breaths.

If our way is blocked, due to an avalanche, a car pile-up, or unexpected road construction, are we simply stuck? Sometimes we are. We’ll have to wait and be late, or we’ll have to turn around and we won’t make it at all. But sometimes, maybe, if we had factored enough extra time into the schedule, we can sort out a way around when we encounter an obstacle. When it’s truly impossible, we just have to take a deep breath.

Sorting out the truly impossible from the obstacle that we just need to grit our teeth and muscle around is something that many of us have been figuring out over the last 13 months. Some of the people who are habitually late and unprepared truly have more obstacles in their paths than the rest of us, through no fault of their own. But some, like the kids and teens among them, and those of us who know that we can always be improving, could benefit greatly from some thought and tips on planning and organization. None of us is born with these abilities, and most of us don’t figure it all out quickly on our own. I’m still working on it… and working on taking deep breaths, when that’s truly the only thing that can be done.

The Follow-Through

Yale University New Haven Connecticut July 2018 Liz OSullivanLearning isn’t always comfortable.

Some of the lessons we learn most thoroughly come from mistakes we’ve made, or from finding out the consequences of actions we never considered before acting. For a specifier, these lessons hit hardest any time after bid opening, through the first few years of occupancy. (Anytime after pricing is set, or worse, after the building is built.) Sure, we research the things we specify, during the construction documents phase, but unless we’ve been given specific direction, we do our best, trying to keep in mind a general sense of the owner’s need for durability balanced with budget, and go with industry standards that align with those goals.

Discomfort sets in when we realize we need to research something further during construction, or after occupancy, because of a question from the architect. It means our work wasn’t quite right, or wasn’t written clearly enough. We need to follow through, follow up on the work we did, and make sure it was right, so the architect can defend it, or figure out what needs to change in order to make it right. Knowing exactly where and how something is being installed or used (once we’re in the construction phase) sure can illuminate the picture brightly, and let us know in which areas to focus our research. We often end up digging more deeply, because of the specific, now-more-clearly-defined, and now-critical, situation, and we end up learning stuff we’ll never forget.

In the last week I’ve had some good questions from some architect-clients: two questions about submittals. Nothing was wrong with the specified products, nothing was wrong with the specs, but there were some complicating factors that could have led to incorrect products being installed. These issues didn’t show up until the submittals came in during construction.

The most recent question came from the architect because the substrate indicated on the submittal for a type of coating was incorrectly listed. This raised some flags, so I looked into it deeply and realized that the manufacturer’s submittal sheet includes 2 different types of coatings, with very similar names, for various different types of substrates, on the same data sheet. The info I got from the architect indicated that the submittal didn’t use the full name of the product – just the words that were common to both of the different products on the datasheet! The incorrect product would have ended up on the building, if the contractor supplied the product most appropriate for the incorrectly-listed substrate. Lesson learned – I plan to always specify using the full name of a product to reduce the chances of a mistake such as could have happened on this project. The name of this product came from the owner and I didn’t change the way it was written. It was clear, but it could have been spelled out, to make it even more clear.

Another recent submittal question came about the specified thickness of sheet metal for a parapet coping. When I wrote the spec, I selected the default in the specification software I use. It turns out that the color of sheet metal we need isn’t available as standard in the thickness specified for the coping, although it is available as standard in all the other thicknesses of sheet metal specified for other uses. The architect asked why this sheet metal for coping was thicker. I wasn’t exactly sure… dug deep… and am now pretty sure that if this wide coping on this very visible sloped parapet were to be made of a thinner metal than specified, we’d see waviness, oil canning, sagging ugliness. Phew – a good lesson to learn, and just in time. Again, there was nothing wrong with the spec, but if I hadn’t been able to give the architect a good reason to ensure that the spec was complied with, it would have been much easier for the architect to allow thinner metal for the coping, and then we would have had a problem.

The chill that goes through me when I realize that I can’t answer a question about my work product immediately upon being asked is humbling. But no one, no one, could ever know enough about specs to know it all perfectly and thoroughly before ever starting out on the path of writing specs. And yes, the follow-through takes time. Following up on something that is brought to our attention well after we issued our documents requires shifting gears, jumping back to something we thought we were finished with, but we belatedly realize we weren’t. Specifiers must be lifelong learners, no matter how uncomfortable that is. 

Venice Italy September 2019 Liz OSullivan

Exterior Decorating

board formed concreteAre you designing for the function and performance of the building, or just doing some exterior decorating?

Funny things can happen early in design on a project, when an architect or interior designer makes color boards for the owner to make selections from, or to present to a municipality, or some other entity with authority, for approval.

It’s natural for interior construction products to be selected on the basis of color and appearance – color may be the driver that leads a designer to select the product, manufacturer, finish, and size. Performance is often not a big factor in the choice of interior finishes. For example, a specific color is desired for a conference room wet bar backsplash, to coordinate with a company’s logo colors. The material could be natural stone or metal or ceramic tile or epoxy paint… and then the perfect color is found in a ceramic tile. So that tile gets specified.

However, the performance and function of exterior materials is much more important than their colors. Appearance is important, of course, but the primary function of the walls and roof of a building is to keep water, snow, hot air, and cold air out of the building. Performance should be a primary factor in the choice of exterior materials. But sometimes the exterior components of a building get selected based nearly solely on color, too. Once in a while, by mistake, early in a project, exterior material design decisions are made without even an understanding of the way these materials will be attached to, or constructed as part of, the building. Then they get presented to the owner or authorities having jurisdiction, and it’s not until later that the team realizes the selected exterior materials won’t work.

I know this happens, because as a specifier, I’ve had some interesting experiences writing specifications based on the information I’ve been given by the architect for different exterior construction products, including fiber cement cladding, aluminum composite material panels, and aluminum windows. Sometimes, for these and other building envelope products, I’ve just been given the manufacturer’s name and the color – but not a product name. I’ve worked backwards from the color finish, and have narrowed my options down to the only product by that manufacturer that comes in that finish, and, viola, I have the product. Usually this is fine, but several times, I’ve ended up specifying a product that is nothing like what the architect thought it was. What happened was the architect selected the finish from the manufacturer’s available finishes, but didn’t check to make sure that the selected finish was available on a product that would work for the application. Then the team figured out later, after more detailed drawings had been developed, that that was not at all what was envisioned.

Few people pick a car to buy based solely on the colors available from a particular dealer or maker. Most people pick the general type of car model they want, maybe compare some different makes and models for performance, safety, and price, and then look at available colors last. Most buildings are meant to last longer than most cars – they certainly shouldn’t be designed with color foremost in mind. Performance and function of exterior materials need to be foremost in the mind of the designer of a building. Color selection should come after that.

There was probably little room for design-team-confusion during the design and specification of the board-formed concrete wall in the photo above. However, most of our exterior construction products do not include their own structure, air/vapor/water barrier, and finish, all in one material, the way this concrete wall does. All of these functions need to be considered when selecting exterior materials. If the exterior finish can’t stand up without backup structure or substrate, but you’re just thinking about finish, you’re just decorating.

If you, the architect, are not designing for the function and performance of the building’s exterior materials, who do you think will do that, and when? This design work should be done by someone on the architect’s team, and should be done in conjunction with, if not before, exterior finish material selection.


I should mention that I did not coin the phrase “exterior decorating” myself. It’s a good one that I like to borrow.

Guidelines: Grocery Lists & Specs

ginger-rootSometimes when we send construction documents out into cyberspace, we don’t know what we’re going to get back. We look at submittals during construction and wonder how in the world someone could think that a particular item would be an appropriate product to use on the project.

Sometimes I read non-work things and wonder if their writers knew that bear and bare have different meanings, peak is not the same as peek, and to and too are two different words. My default assumption is that people write what they mean, and when things are written properly, I am a quick reader. When things are not written properly, I am a slow reader. (If something doesn’t make sense the way it’s written, I tend to reread it with all the possible misspelled homonyms and autocorrect blunders and alternate punctuation in mind. Some people do not bother to take this extra time, and just go with their first impression.)

I know that we can’t, with our written communications, enforce someone else’s compliance with construction contract documents. But we can make those documents easier to read, and, perhaps then, easier to follow.

The other night, my kids suggested stir-fried tofu for dinner. My husband offered to buy ingredients. The grocery list I texted to him included the following:

1 bunch broccoli (1-1/2 lb)
2″ piece fresh ginger root
1 bunch scallions

When I took the produce out of the bag, I found the items pictured above – 2 large knobs of ginger root.

That’s my hand in the photo – my female, normal-sized hand. So the picture clearly shows a lot more ginger root than the one 2-inch piece I’d asked for. I got almost 10 times what I needed.

While cooking that stir-fry, I realized that maybe if I had described the ginger differently, I might have had better results. (I wouldn’t be trying to figure out how to use up some ginger root tonight.) I could have written:

1 bunch broccoli (1-1/2 lb)
1 2-inch piece fresh ginger root
1 bunch scallions

I could have been more parallel and consistent in my writing, and could have used the number of units I wanted for the ginger the way I had for the broccoli and scallion. Maybe then I’d have just gotten one piece, as I’d wanted.

Or, maybe the inch symbol seemed to be a typo. If I’d spelled out “inch,” instead of using the inch symbol, it would have been obvious that I actually meant to write inch, and maybe I’d have gotten ginger root in the size I’d wanted.

There are some good guidelines for specifications writing that I usually try to use in all my writing (even my grocery list text messages). I try to use parallel construction – I write sentences using the same grammatical pattern of words. I use words instead of symbols for “degree,” “percent,” “plus,” “minus,” and “at.” I use full size numbers for fractions, instead of superscript and subscript fractions.

There are good reasons for these, and other, guidelines. If instructions in Part 3 of the spec section are not written in a parallel way, they could be mixed up or overlooked. (“Examine products before installation. Reject damaged materials.” reads better than “Examine products before installation. Damaged materials shall be rejected.”)  If the specs get printed on paper, and subsequently photocopied, symbols and small characters can become illegible. If the specs get converted from one font to another in a word processing program, or converted from one digital program to another, some symbols might actually get generated as different symbols, or could be lost completely.

Someone’s made these mistakes before, and people have created guidelines to prevent others from having to learn through their own experiences. These guidelines and others exist to help us write more clearly, in ways that are less likely to be misinterpreted. Sometimes I encounter specifications that run the risk of being misinterpreted, or are actually incorrect, due to the use of symbols or superscript or subscript characters that have become illegible or are conveying a different meaning that intended. These are usually manufacturers’ guide specifications and documents from building owners.

Everyone who writes specifications or other construction communication could benefit from learning some of these writing guidelines. Check out Construction Specifications Writing: Principles and Procedures by Harold J. Rosen, Mark Kalin, Robert S. Weygant, and John R. Regener, Jr., published by Wiley, and The CSI Construction Specifications Practice Guide, published by The Construction Specifications Institute.

 

 

 

School Supplies

school-suppliesGone are the days when my sweet firstborn wanted to buy his school supplies months ahead of the start of school. Shopping seems to have become almost as much of a chore for him as it is for me. This year, we bought school supplies 2 days before school started.

As we have in previous years, we spent a considerable amount of time wandering around stores searching for some very specific items indicated on the school supply list, and then, when we couldn’t find some of them, we bought things that are similar but not exactly what the list indicated. “It’s like they just write down something they want us to get without researching to see if it exists,” said the 13-year-old. Yep, he’s right. When we did research online on the specified spiral notebook manufacturer’s website, we found that the specified brand of notebook, with the specified number of subjects and pages, and the specified size of ruled lines, does not exist without perforated pages, but the teacher specified non-perforated pages. So it’s not just that the stores we went to don’t have it – the teacher made up the product, or specified a discontinued product. Yet, there it is on the list.

Not surprisingly, some kids showed up at school the first day this year without one item that all kids were supposed to have, but which wasn’t indicated on the individual class lists, only on the first page of the school supply list packet, which included lists for each preschool, elementary, and middle school grade. This item, a new item this year, and the only item listed at the top of this packet, was in red text in the PDF, as opposed to the black text of every single other item, but it just wasn’t listed in the right place. I’m sure I wasn’t the only parent who printed out only the page with my kids’ lists, and didn’t print out the first page, which included that one item that everyone needed. We did get that item – but we had to go to 4 different stores to get 2 of them, one for each of my kids. It was a bit of a hard-to-find specialty item, one that I’d have listed on each grade’s list, if I were generating the school supply lists.

Another item, specific solid-colored gym shorts, also a new requirement this year, was deleted from the school supply lists, via email, about 17 hours before the first day of school started, right after my husband and kids returned home from purchasing those actual shorts. While commiserating with other parents the next day, one said that she’d just ignore the “fine print” from now on, since her friends did that regarding the gym shorts (never even noticed the gym shorts requirement), and everything worked out fine for them.

These are just school supplies, of course. Really, it shouldn’t be this hard to specify what you want in a way that the reader can understand it and be able to purchase it. Sometimes in my life it’s just school supplies, sometimes it’s construction materials.

Most of us know that buildings are built out of real products bought from real-life distributors, but sometimes not enough time is spent researching a product or assembly to see if different combinations of options are available. It would be better to specify more generically than to send some subcontractor on a wild-goose-chase for an impossibly specific product and to show some impossible combination of options in the drawings.

We all know that line in some contracts that tells us that “the Contract Documents are complementary, and what is required by one shall be as binding as if required by all,” but this is not a license to put information in the wrong place and think that’s fine. Even if it’s in red text. Especially if it’s a specialty product.

Changes happen; there are no perfect documents. But when such changes are made too late, it’s aggravating for everyone – the change itself isn’t that big a deal, but when it comes so late, people, rightly or wrongly, get upset.

Inconsistent communications, requirements listed in the wrong place, and untimely changes make people question the true intent of communications, and, ultimately, ignore the odd ones. Those people may be right – those odd ones often turn out to be accidental, or get value-engineered out – but this throws into question everything that comes from that one communicator – the communicator loses credibility.

All of this speaks to the importance of putting accurate information in the right place and issuing changes in a timely manner. You don’t want the people you are trying to communicate with to vow to ignore your “fine print” from now on.

What, Exactly, Are We Communicating?

Respect Private Property

What’s a hiker to think? You can see the summit from here, the hiking trail guidebook says the trailhead is up here somewhere, but the street signs don’t match the road names on the maps or in the guidebook, and now you see these conflicting signs on what you’re pretty sure is the right road. The green sign at the beginning of the road says “Private Property Beyond This Point, No Trespassing,” which usually means that one should not proceed. End of story, right?

Well, there’s another sign, farther away, up this same road. That brown sign says “Respect Private Land, Stay on Main Road,” which implies that it’s actually ok to proceed up this “No Trespassing” road, but only if you don’t veer off the road. Then, of course, there’s that little tacked-on “No Parking” sign, which implies that it’s ok to drive up this road, but only if you don’t park on it.

I’m a rule follower, so these conflicting signs confound and paralyze me. Surely we’d never create anything as confusing as this in the construction industry, would we?

I did a whole bunch of invoicing last month, because I had a ridiculous amount of work in April. I took a good, hard, look at my time on one of those projects, and confirmed my suspicions that I’d gone waayyy over my budgeted hours on this lump-sum-fee project. Wow, what a deal my client got, right? All those extra hours spent making the specs perfect? Well, not exactly.

Every few days while I was working on the project, I was sent a digital pile of information by my architect-client, who received stuff from the owner team. Many of these documents conflicted with each other, sometimes giving as many as 3 different conflicting instructions for one thing. I spent a lot of time trying to reconcile all the different directives – time that I actually needed for other things, like product research for the project, coordination for the project, work on other projects, family time, and sleep.

As most of the info was related almost solely to the specifications, and it came from the owner team, who should have known what they wanted since this wasn’t their first one of these buildings, the architect didn’t spend too much time reviewing it before forwarding it on. So my questions about this info were confusing to them, and, for some reason, some were unanswerable by the owner.

I’ve never been on the contractor team for a project, but I think I know how estimators feel when the architectural drawings say one thing, the structural drawings say something different, and the specs say a third different thing. An estimator may want to just take the risk of pricing what makes the most sense, and hoping it’s right. Asking questions during the bid period is sometimes an inefficient use of time, and experience may show that some answers aren’t worth the time spent. Perhaps this is why the design team sees surprises when submittals come in.

Back to that hike. As it turns out, if you can get to a place where you can receive a strong enough cellular signal, and you can look at a satellite view of the area with the conflicting signage, you can figure out whether or not you were on the right road to the trailhead.

Or maybe you skip that research, you just take that risk of trespassing, and you drive up that road. It’s a rutted 4-wheel-drive road, so you are hoping it’s the right road because it’s going to be a rough ride.

Turns out the trailhead and parking area are a half mile up that road! Apparently, you just have to ignore that first sign.

What a terribly inefficient standard operating procedure for communications of any type. Issuing conflicting instructions to a group requires multiple parties to either all risk making the wrong guess (and risk losing time or money), or all spend time doing the same research to figure out which of the conflicting instructions is the intended one. Whether the group you’re trying to communicate with is hikers, bidders, or your design team, isn’t it best to just issue clear, concise, correct, and complete information the first time?

Or maybe we could just shoot for non-conflicting.

 Black Diamond

Are Your Specification Concerns Reaching the Right Person?

Owners, contractors: I’m talking to you. The person who writes the specifications for a project is often not the project architect. Why is this important to keep in mind? A story from real life:

Last night as I sat at dinner with my family, we discussed plans for an upcoming weekend away with friends. My husband has employees, and is good at delegating tasks to his associates and assistants. I work for myself and am used to doing everything at the office. Sometimes my husband employs his well-developed delegation skills at home. (Sometimes I’m halfway through doing something before I realize that he has delegated to me a task that he really ought to be doing himself.)

Last night, the delegation was about our travel plans – he was asking me to email something to our friends that he was having trouble communicating clearly to me. I didn’t understand the point he was trying to make, yet he was asking me to reach out to our friends and “let them know.”

I wasn’t going to pass on some unclear nonsense in an email with my signature. After I suggested that he send the email himself, he managed to verbally articulate his concerns clearly to me, and I later sent the email. It would have been better if my husband had sent the email himself, but he doesn’t like typing (and I love him).

Sometimes while my husband is driving, he’ll call me and ask me to contact someone about coordinating the kids’ soccer practice pickups that he and someone else have already communicated about. I know nothing about their plans, the two of them have previous knowledge, I’m supposed to be the middleman, but I don’t have all the information they have. I do my best, I ask questions to make sure that I’m passing on the right info. I really prefer that my husband contact people directly, but sometimes he doesn’t have contact info at hand while he’s driving.

Not everyone who fulfills delegated middleman tasks is as conscientious as I am. Not everyone understands the things they listen to, transcribe, and send on to someone else, yet they send them on, because they know it’s part of their job. Double-checking that you’ve properly understood the meaning of something before you pass it on to someone else is a good practice, whether it’s for work or fun, but not everyone does this.

The owner, the end users, the construction manager, the general contractor, and the subcontractors on a construction project usually communicate with the project architect or the architecture firm’s construction contract administration person. This person may or may not have prepared the project specifications; usually someone else wrote the specs. If a sub has a question about something in the specifications, and has an old-fashioned talking conversation about it with the project architect, important items have the potential to be lost before they get passed on to the specifier. The project architect or contract administrator, the middleman in this case, may not have the deep knowledge about specifications that the subcontractor and specifier have, and might only pass on what was understood, or might even take a guess at what was meant.

Owners, users, construction managers, general contractors, subcontractors: Never assume that your contact at the architecture firm actually wrote the specs. Keep in mind that it’s possible that this person isn’t actually very familiar with the contents of the project manual. If the specifier is not at your project meeting, and items come up that affect the specs, I suggest that you communicate your concerns in writing to the project architect, so that the project architect can send on your concerns to the author of the specifications verbatim, and not risk having the original meaning of your question or comment get lost in translation. Better yet, copy the specifier on your email to the project architect… or maybe even save the specifier a seat at the table for your project meetings.

What Did We Learn About Substitutions?

January’s Panel Discussion on Substitutions at the Denver Chapter CSI meeting included an owner’s rep, a general contractor, a subcontractor, an architecture firm’s construction contract administrator, and a specifier. Here’s some of what we learned.

Many owners welcome substitutions.

The biggest divergence of opinions was about owners’ positions on substitutions. The loud and clear message from the owner’s rep was that owners welcome substitutions, and that many are frustrated with architects’ and specifiers’ reluctance to entertain substitutions. In the eyes of the owner’s rep, there are two crucial things – cost and schedule. Since time is money in construction, schedule is very important to owners, so even a substitution that costs more money but saves time is likely to be favorably received by an owner. Owners wish that more architects and specifiers understood the overall impact of substitutions, time- and money- wise. (It’s important to note that the owner’s rep on the panel primarily represents developers, and recent projects have been multifamily residential projects.)

The specifier pointed out that for private work, substitutions can be good because they give the design team an opportunity to evaluate things they may not have evaluated when they first prepared the documents.

The subcontractor thinks that substitutions are an opportunity for the owner to get a better value. With the developments and changes in products and assemblies that happen all the time, architects and specifiers can’t keep up. Subcontractors, who are specialists in their areas, can keep up, and may be able to offer better solutions.

But some owners don’t want substitutions.

The specifier reminded us that many owners, especially in the public sector, want what they know has worked, and do not want substitutions. Owners such as municipalities, public school districts, and universities may own and maintain many buildings, and need maintenance procedures to be the same from building to building. Public owners’ requirements are sometimes outdated, however, and the specifier does not always have the opportunity to explain to the owner that several of their listed acceptable manufacturers no longer exist.

Substitutions scare architects.

Substitutions scare architects, and for good reason. They spend a lot of time designing around a particular product – that’s why that particular product is specified. Architects worry about how many details in the drawings will be affected – and will no longer be correct – because of a particular substitution. During the months-long design process, design decisions are followed all the way through everything that’s affected by them. There’s often no time to go back and do this again during construction. And when design changes have to be made due to a substitution, it is hard to be sure one has gone back and checked every possible thing that could be affected, as was done when the design was first developed. This is not only due to time constraints, it’s also because this is not how the design process naturally flows.

Architects also wonder if the owner is getting something of a lesser value on the project when a substitution has been accepted because the owner was attracted to cost savings. The architect knows that the owner is happy to be getting something cheaper, but the architect worries that the owner is giving up something of greater value or performance (the specified item), and the general contractor or subcontractor is the one actually saving more money on the substitution.

People have different ideas about what a substitution is.

Panelists agreed that different team members on a design and construction project do not agree about exactly what a substitution is. The general contractor pointed out that team members treat substitutions differently depending on the project delivery method. Substitutions are treated differently on hard bid (design-bid-build), negotiated (construction-manager-at-risk or construction manager/general contractor), and design-build projects.

The general contractor doesn’t want to receive substitutions submitted by subs on hard bid (design-bid-build) projects, because they are usually submitted to the general contractor without enough time to get them approved by the architect prior to the bid. The general contractor then has to decide whether or not to use the price associated with that substitution. If the general contractor is not the low bidder, it doesn’t matter, so there’s an incentive to use the price associated with an unapproved substitution. But if he uses that number and then the substitution is not accepted when submitted to the architect after the bid, he’s losing money.

On negotiated projects, the general contractor wants to see substitutions, get pricing, explain to the owner and the architect that if this product is used instead of a specified product, the owner can save money, or the schedule can be shortened. There’s more of a collaborative effort on negotiated projects.

The specifier (of course) read us the definition of a substitution from MasterSpec. It’s vague. Most of the industry probably agrees that “the devil is in the details” on this issue. We agree that a substitution is a change, but what kind of a change, and how a substitution is supposed to be evaluated, are where the differences of opinion and misunderstandings occur. The owner and design team need to define how casual or formal the process for evaluating substitution requests is. The specifier believes that part of his job is to define that evaluation process succinctly.

For better or worse, “or equal” is flexible.

The owner’s rep doesn’t mind the phrase “or equal” at all. Owners are looking for general contractors who are willing to “turn stones” and look for better options, and the phrase “or equal” in the specs allows for more possibilities.

The contractor says that “or equal” in a spec gives them more flexibility to look at the possibility of using an unspecified product in the bid.

Architects do not like the phrase “or equal” because it is open to multiple interpretations. There’s a lot of information that needs to be evaluated to see if something that is submitted is actually equal, so if someone submits on an “equal” that is not listed in the specs, this contract administrator asks for a substitution request.

The subcontractor likes the phrase even less than architects. He described it as two words in a specification that make subcontractors want to turn away and run as fast as they can in another direction. He thinks that if an architect goes through the exercise of heavily specifying one product that there isn’t an “equal” to that. He described “or equal” as a “cop-out” that allows way too much flexibility. (How is a sub supposed to know what is considered to be equal?)

The specifier does not use “or equal” in his specs, because the phrase is full of uncertainties. “Or equal… determined by whom?” he asked. He believes that the only equal to a product is the next product on the assembly line of the manufacturer who’s making it. “Equal” is too strict a term to be put out there to be determined by anybody. The specifier prefers a phrase like “Alternatives are welcome to be presented” along with a statement about who approves the alternatives. He believes it’s a more honest way to evaluate alternatives.

We got an interesting question at the end of the panel discussion from a chapter member about “or equal” and public work. Some government owners require that “or equal” be added to a list of products or manufacturers. We discussed different ways to define “or equal” in the construction documents, and procedures for evaluation. Some government entities do not actually define “equal,” or give any guidelines for procedures to evaluate “equals,” but still require that the phrase be included.

We’re not sure about “no substitutions.”

The owner’s rep would never advise an owner to require “no substitutions” in the spec.

When asked how much pricing is affected when competition is limited by specifying “no substitutions,” the general contractor responded that the problem is that you don’t know. The suspicion is that higher pricing does result when there’s no competition.  We’re in a competitive environment, and if someone is sole sourced, they may take advantage of that and bump up their price.

In the subcontractor’s experience, typically an owner doesn’t end up with higher prices when a sole source with no substitutions is specified. For curtainwall, pricing is only given to select vendors, and some can provide better pricing than others in bids, but their numbers probably won’t change based on how many manufacturers are named. Separate from the pricing issue is a service issue; the subcontractor mentioned that some vendors may have more leverage to get replacement products out on the jobsite faster than others.

The earlier a substitution request is made, the better.

Everyone generally agreed that the earlier a substitution request is made, the better.

The specifier pointed out that procedural requirements for substitutions that happen prior to the bid are not part of the contract documents – they’re part of the instructions to bidders. In these cases, approved substitutions are no longer substitutions at the time the contract is signed – they become part of the contract. Procedural requirements for substitutions that happen after the bid are part of the contract documents.  Also, substitutions that happen after the bid are divided into substitutions for cause and substitutions for convenience – requests for substitutions for cause are submitted when things are not available, manufacturers don’t make something anymore, etc. MasterSpec specifications software suggests that all substitutions for convenience should be received within a certain number of days after the construction contract is signed.

The owner’s rep’s projects typically have negotiated contracts, so don’t have hard bid dates. He said that as long as substitutions are decided upon prior to signing the contract, substitutions are fine.

The general contractor believes it’s best to require substitution requests to be submitted prior to the bid, but from a practical standpoint, it makes sense to accept some substitutions after the bid.

The architect’s contract administrator sounded somewhat resigned as she said that substitutions are going to happen before, and after, the contract is signed. It’s better to receive the substitution requests at the right time, before the bid. But even more important than timing is that the general contractor should actually review the substitution request before sending it on to architect (and not just stamp it and pass it on without actually reviewing it).

The subcontractor thinks that it’s good to receive substitution requests during and after the bidding process, because the project benefits from time for the team to collaborate. The best results, best pricing, best performance, best product can come out of collaboration. Any other way is subjective – just one person’s opinion. The project can get to a higher level with collaboration, with everybody involved.

Can we eliminate the substitution process?

A guest attending the meeting asked how we get rid of this substitution process. The subcontractor on the panel said that the only way to get rid of the substitution process is to write performance specifications instead of specifying products, manufacturers, or descriptions that point to specific manufacturers.

CSI’s Construction Specifications Practice Guide defines a performance specification as “a statement of required results with criteria for verifying compliance, but without unnecessary limitations on the methods for achieving the required results.” The book cautions that “an incomplete performance specification results in a major loss of quality control over the materials, equipment, and workmanship going into a project.” The criteria for verifying compliance need to be “capable of measurement, test, evaluation, or other acceptable assurances.”

In performance specifying, no products, manufacturers, or installation requirements are specified. Anything that can meet the required results, and whose compliance with the required results can be verified, meets the spec. In performance specifying, although a product is not named in the spec, it meets the spec if it meets the required results indicated in the spec. Even though it’s not named, a substitution request is not necessary.

Performance specifying transfers some design duties and control from the design team to the contractor team. It allows many more options to be presented to the general contractor. It takes some control away from the architect and the owner – if they don’t like the way something looks, they may not be able to point to the spec and say that something doesn’t meet the spec. If it performs the way the performance specification requires, it meets the specification, and cannot be rejected without a change order.

Thank you to the panelists: Tom DeBerard of DAE Construction Services, Stan Ward of Ward Construction, George Feathers III, currently of Curtain Wall Design & Consulting, Inc., Morayma Salas of Cuningham Group, and David Bishton of Construction Rx, LLC.