When Things Fall Apart

The best way to learn how buildings get put together may be to build them, or to watch them be built. But another pretty good way to learn how things go together is to see them falling apart.

You may not ever notice the piece of clay tile that plugs up the bottom of a curved tile at the edge of the roof – but here, in the center of the photo below, it’s sliding out, so you see it, and this may make you curious.


Some people call these eave closure pieces “birdstops.” Some manufacturers provide such accessory pieces in metal. These, on an old house in Denver, are clay to match the roof tiles. Their purpose is to keep out weather, birds, and little four-legged critters.

Falling apart has an upside – we can learn how things are supposed to be put together.

Guidelines: Grocery Lists & Specs

ginger-rootSometimes when we send construction documents out into cyberspace, we don’t know what we’re going to get back. We look at submittals during construction and wonder how in the world someone could think that a particular item would be an appropriate product to use on the project.

Sometimes I read non-work things and wonder if their writers knew that bear and bare have different meanings, peak is not the same as peek, and to and too are two different words. My default assumption is that people write what they mean, and when things are written properly, I am a quick reader. When things are not written properly, I am a slow reader. (If something doesn’t make sense the way it’s written, I tend to reread it with all the possible misspelled homonyms and autocorrect blunders and alternate punctuation in mind. Some people do not bother to take this extra time, and just go with their first impression.)

I know that we can’t, with our written communications, enforce someone else’s compliance with construction contract documents. But we can make those documents easier to read, and, perhaps then, easier to follow.

The other night, my kids suggested stir-fried tofu for dinner. My husband offered to buy ingredients. The grocery list I texted to him included the following:

1 bunch broccoli (1-1/2 lb)
2″ piece fresh ginger root
1 bunch scallions

When I took the produce out of the bag, I found the items pictured above – 2 large knobs of ginger root.

That’s my hand in the photo – my female, normal-sized hand. So the picture clearly shows a lot more ginger root than the one 2-inch piece I’d asked for. I got almost 10 times what I needed.

While cooking that stir-fry, I realized that maybe if I had described the ginger differently, I might have had better results. (I wouldn’t be trying to figure out how to use up some ginger root tonight.) I could have written:

1 bunch broccoli (1-1/2 lb)
1 2-inch piece fresh ginger root
1 bunch scallions

I could have been more parallel and consistent in my writing, and could have used the number of units I wanted for the ginger the way I had for the broccoli and scallion. Maybe then I’d have just gotten one piece, as I’d wanted.

Or, maybe the inch symbol seemed to be a typo. If I’d spelled out “inch,” instead of using the inch symbol, it would have been obvious that I actually meant to write inch, and maybe I’d have gotten ginger root in the size I’d wanted.

There are some good guidelines for specifications writing that I usually try to use in all my writing (even my grocery list text messages). I try to use parallel construction – I write sentences using the same grammatical pattern of words. I use words instead of symbols for “degree,” “percent,” “plus,” “minus,” and “at.” I use full size numbers for fractions, instead of superscript and subscript fractions.

There are good reasons for these, and other, guidelines. If instructions in Part 3 of the spec section are not written in a parallel way, they could be mixed up or overlooked. (“Examine products before installation. Reject damaged materials.” reads better than “Examine products before installation. Damaged materials shall be rejected.”)  If the specs get printed on paper, and subsequently photocopied, symbols and small characters can become illegible. If the specs get converted from one font to another in a word processing program, or converted from one digital program to another, some symbols might actually get generated as different symbols, or could be lost completely.

Someone’s made these mistakes before, and people have created guidelines to prevent others from having to learn through their own experiences. These guidelines and others exist to help us write more clearly, in ways that are less likely to be misinterpreted. Sometimes I encounter specifications that run the risk of being misinterpreted, or are actually incorrect, due to the use of symbols or superscript or subscript characters that have become illegible or are conveying a different meaning that intended. These are usually manufacturers’ guide specifications and documents from building owners.

Everyone who writes specifications or other construction communication could benefit from learning some of these writing guidelines. Check out Construction Specifications Writing: Principles and Procedures by Harold J. Rosen, Mark Kalin, Robert S. Weygant, and John R. Regener, Jr., published by Wiley, and The CSI Construction Specifications Practice Guide, published by The Construction Specifications Institute.